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conclusion that this transfer would be driven by competition is the product of

its mistaken economic analysis.
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The Basic Model

()ur starting point is a model first developed hy McDonald and Siegel (f 986).
i hey wnsidelcd the following prohlem: At what point is it optimal tu pay
a sunk cost / in return for a project whose value is V, given that V evolves
according to the following geometric Brownian motion:

IlIUSt decide when to invest in a single project. The cost of the investment, /, is
known and fixed, but the value of the project, V, follows a geometric Brownian
motion. The simple net present value rule is to invest as long as V > I, but as
McDonald and Siegel demonstrated, this is incorrect. Because !lIfllre values
of V are unknown, there is an opportunity cost to investing today. Ifence the
optimal investment rule is to invest when V is at least as large as a critical
value V' that exceeds /, As we will see, for reasonable parameter values, this
critical value may be two or three times as large as /. Ifence the simple NPV
rule is not just wrong: it is often vcry wrong.

After describing the hasic model in more detail, we will show how the
I lptimal investment rule (that is, the critical value V·) can be found by dynamic
programming. An issue that arises. however, is the choice of discount rate.
H capital markets are "completc" (in a sense that will be made clear), the
investmcnt prohlem can be viewed liS a problem in option pricing. and solvcd
using the techniques of contingent claims analysis. We will re-solvc the optimal
investment prohlem in this way, and then examine thc characteristics of the
linn's option to invest and its dependence on key parameters. Finally, we will
nlend the model hy considering alternative stochastic processes for the value
IIf the project, V. In particular, we will find lind characterize the optimal
investment rulcs that apply when V follows a mean-reverting process, and
then when it follows a mixed Brownian motion/Poisson jump process.

ell' = IX I' ell + (J Velz, (I)

costs arc positive and m'lllagcrs have the option to slllIt down thl~ tactl)J y

temporarily when the price of output is below variable cost, and/or Ihe option
to abandon the project completely, V will not follow a geometric Brownian
motion evcn if the price of widgets does. (We will develop mudels in which
the output price follows a geometric Brownian motion and the projt'ct Gill

be tcmporarily shut down and/or abandoned in Chaplers II and 7.) If variahle
cost is positive and managers do not have Ihe option to shut down (perhaps
because of regulatory constraints), V can hecome negative, which is again in
conniet with the assumption of lognormality. In addition. otiC might hclieve
that a cumpetitive produci market will prcventthe price from wanderin!! 100

far from long-run industry-wide marginal cost, or that siochastic change" in
price are likely to be infrequent but large, so Ihal /. should follow a Ole,1I1­
reverting or jump process. For the time heing we ignore these possihilities in
order to provide the simplest introduction 10 the hasic ideas and techni(lues.
We allow exogenously specified mean reversion in Section <;( a) of Ihis chapler.
and consider industry equilihrium in Chapters Hand I).

Note that the firm's investment opportunity is equivalent to a perpel·
ual call option--the right hut not the ohligation to huy a share of stock al
a prespecified price. Therefore the decision to invesl is cquivalenl to dClid­
ing when to exercise such an option. Thus, Ihe investmenl decision can he
viewed as a prohlem of option valuation (as we saw in the simple examples
presented in Chapter 2).1 Alternatively, il can be viewed as a prohlem in dy­

namic plOgramming. Wc will derive the optimal investment rule in two ways.
first using dynamic programming, and then using option pricing (contingent
claims) methods. This will allow us to compare these two approaches and the
assumptions that each requires. We will then examine Ihe characleristics III

the solution
In what follows, we will denote the value of the investment opportunily

(that is, the value of the option to invest) by F( V). We want a rule that maxi·
mizes this value. Since the payoff from investing al time I is V, - I, Wl~ wanl
to maximize its expected present value:

where £ denotes the expectation, T is the (unknown) future time that the
investment is made, p is a discount rate, and the maximization is suhject to

'The investmcnt opportunily is analogous to a perpetual callolll",n on a dividend l'aYIII~

stock. (lbe payout stream from the completed project is cquivalentto the dividend on the sltN:k)
A solution lolhis 1",lion valualion and exercise problem was firsl found hy Samuelson ( 1'1(,<; I

where dz is the increment of a Wiener process. Equation (I) implies that
the current value of the projcct is known, but future values are lognormally
distrihuted with a variance that grows linearly with the time horizon; the exact
forlllulas arc in Section 3(a) of Chapter 3. Thus although informatiun arrives
over time (the firm ohserves V ch'lIlging), the future value 01 the project is
tI!ll'(lYJ uncertain.

Equation (I) is clearly an abstraction from most real projects. For ex­
amplc, suppose the project is a widget factory with some capacity. If variable

FIn = max [(IV] - 1)(' 1"1. (2)
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2 Solution by Dynamic Programming

dF = f"{ndV +! reV)(dv)2

It will be easier to analyze the solution and to compare it to that obtained using
contingent claims analysis if we make the substitution a = p - cSt To ensure
existence of an optimum (for reasons already explained in connection with

Substitutingequation (I) for dV into this expression and noting that [(dz) = 0
~ives

[[elF) = IX V F'(nd/ + !0
2 V2 r(V)d/.

llence the Bellman equation becomes (after dividing through by d/):

(9)

(" )

(12)

(10)F(O) = 0,

F(V*) = V' - f,

F'(V') = 1.

In addition, F(V) must satisfy the following boundary conditions:

the deterministic case), we assume that a < p, or cS > O. With this notation.
the Bellman equation becomes the following differential equation that must
be satisfied by F(V):

Ja2V2 F"(V)+(P-cS)V F'(V)-pF=O.

Condition (10) arises from the observation that if V goes to zero. it will Slay
at zero [this is an implication of the stochastic process (I) for V). Therefore
the option to invest will be of no value when V = II. Thc other two conditions
come from consideration of optimal investment. V' is the price at which it is
optimal to invest, or in the language of Chapter 4. the frl'e boundary 01 the
continuation region. Then (11) is the value-matching conditiun; it just says that
upon investing, the firm receives a net payoff 1" - I. Finally. condition (12) is
the "smooth-pasting" condition, discussed in Chapter 4 and it.. Appendix C.
If F(V) were not continuous and smooth at the critical excrcise point V', OIlC

could do beller by exercising at a different poilll.
Note that equation (9) is a second-order differential equatioll, hutlhLrc

are three boundary conditions that must be satisfied. The reason is that al­
though the position of the first boundary (V = II) is known, the position of
the second houndary is nol. In other words, the "frec boundary" V' mllst he
determined as part of the solution. That needs the lIurd (;(llldtllllll.

Equation (II) has another useful interpretation. Write it as V' - n ,.. )
f. When the firm invests, it gets the project valued V. hut gives up the 0pl'0r­

tunity or option to invest. which is valued at F( V). Thus its gain, net of the
opportunity cost. is V - F( V). The critical valuc V' is where this net gain
equals the direct or tangible cost of investment. I. Equivalently, we muld
write the equation as V· = / + F( V'), setting the value of the project equal
to the full cost (direct cost plus opportunity cost) of making the investmcnt.
We will discuss this point in more detail later.

To find F(V). we must solve equation (9) subject to the boundary condi­
tions (10)-( 12). In this case a solution is easy to find; we can guess a functional
form, and determine by substitution if it works. We first state the solution and
derive some of its properties, and then discuss it in more detail.

(8)

(7)P Fd/ = [(dF).

! 17 2 V 2 r (V) + IX V F' (V) - p F = O.

!:lluation (7) just says that over a time interval dl, the total expected return
on the investment opportunity, p ,.. d/, is equal to its expected rate of capital
appreciation.

We expand dF using Ito's Lemma, and we use primes to denote deriva­
tives, for example. F' = d F/dV. F" = d2F/dV2, etc. Then

In the terminology of Chapter 4, we have an optimal stopping problem in
continuous time. Because the investment opportunity, F( V), yields no cash
Hows up to the time T that the investment is undertaken, the only return
from holding it is its capital appreciation. Hence, as we saw in Chapter 4, in
the continuatiun region (values of V for which it is not optimal to invest) the
Bellman equatiun is

a critical value V * such that it is optimal to invest once V > V·. As we will
see, a higher value of 0 will result in a higher V *, that is, a greater value to
waiting. It is important to keep in mind, however, that in general both growth
(a > 0) and uncertainty (0 > 0) can create a value to waiting and thereby
affect investment timing.

In the next two sections, we will solve this investment prohlem in two ways,
following the techniques described in Chapter 4. First, we will use dynamic
programming, and then we will solve the same problem over again using
contingent claims methods. This will enable us to carefully compare these
two approaches.
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( IX)

( 17)

the quadratic expression totally:

aQ ap, aQ _ 0
ap au + au - ,

where all derivatives are evaluated at fl •. Figure 5.2 shows that aQ lap> 0
at 11,. Also

aQlaa = (1 P(I1- I) > 0

at 11. > I. Therefore apt lila < O.ln other words, as (1 increases, PI decreases,
and therefore PI I (PI - I) increases, The greater is the amount of uncertainty
over future v<llues of V, the larger is the wedge between V· and I, that is, the
larger is the exces.c; return the firm will demand before it is willing to make the
irreversible investment.

Readers can likewise verify two other propertics of this quadratic. First,
III incrcases as l; increases, so a higher l; means a lower wedge P,/(PI - I).

Second, 111 decreases as p increases, so a higher p implies a larger wedge. We
will discuss these results in greater detail and offer some numerical values in
Section 4 of this chapter.

Some limiting results conccrning 111 are also informative. Wc merely state
thcm; they arc easily vcrified using the algebraic formula. First, as a _ 00,

we have PI ---> I and V· -;. 00, that is, the firm never invests if (1 is infinite.
Next consider what happens as (1 -;. II. We have

and dV is given hy equal ion (I). The usual Marshallian rule is to invest as
long as VI ::: I, or 1r, ::: (p - a) I. However, equation (14) tells us that inslead
the firm should invest when

1f, ~1f. = 11~ I (1'-0')1 > If! 'ltll

Another way to look at this is in terms of the Jorgensonian approach 10

investment,) From the quadratic equation (16) satisfied by 11" we have

PI I 2-- IP - IY) = p+ 'j (1 Ill·
PI - 1 •

Thus the critical profit level1f· can be written as

Jr. = (p+ ~,.,2 Ill) I> pl.

Since we have assumed zero depreciation, pI is Ihe Jorgcl1sunian user cost 01

capital; the Jorgensonian rule is to invest when 1f, = pI. Equation (18) says
that whl~n future profits are uncertain. the threshold IT' mllst exceed this user
cost of capital.

In the absence of uncertainty, the Jorgellsoniiln investment rule has the
firm investing when 1r, = 1'1, not when Jr, = (p - a) J. As we saw before, this
can be viewed as an optimal timing rule. Once again. the firm must choose T
to maximize

If a > O. then 131 -;. 1'1(1' _. .5) and V· ---> (p/[,) I.

If a :::: 0, then PI -;. 00 and V' -;. I.

These results conform to those of the deterministic case thaI we examined
""r1ier

(

1rUe"T ) ,I 1fue~ (p~'alr /.1
max -- - I e I = ----. -~ Ie.

T p-a p-a

The solution is to invest at a time T when

7fT ~rr!l#,a7 of

( II))

( '(I)

2.11 Relationship to Neoclassical Investment Theory

To push this analysis a bit further, suppose that the project itself is an infinitely
lived factory that produces a profit flow, 1r1t that follows the process

d1r = a 1r dt + U1r dz.

Ifence V is given by

/

00 1r
V, = [; 1f.< e-p(j-I) ds = __1_,

, p-a

(The reader can verify that 0' > () is the second~order condition for 1his
maximization.) Therefore the firm should wait to invest even if there is no
uncertainty, bccause waiting allows thc postponement (and thus diseountillg)
of the payment 1.4 As equation (18) shows, with uncertainty there is an addi~

tional !,.,2 PI term, SO that the firm must wait even longer before investing.
This additional term can be thought of as a correction to the neoclassical
investment model.

'Jorgenson (I'J6J)showed that ahsent uncertainty. the firm shnuld invest when the mar!!;nal
profit from an ext", unit ofcapitat equals the user cost of capital. Our Ihanks to Giuseppe Bertnla
for sugestill£ this viewpoint in this context.

'To nur knowledge. this point was first noted by Ma.glin I 1%1, ('hapte, 2).
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J.L = r + (j>P.",o,

·111al is. 4> = (r~ - r)/o~. wherc r. is the expected rclurn on the markel. and (1. is the
standard deviBtion of that return. Ifwe take the New York Stodc e.:hange Indell .. the IIIVket.
r. - r ~ 0.08 and 0 • .., 0.2, so 4> .., 0.4. For a more detailed disc:ussion of the C8pitBl Asset
Pricing Model. see Brealey and Myers (1991) or Duffie (1992).

where J.L, the drift rate, is the expected rate of return from holding this asset
or portfolio of assets. According to the Capital Asset Pricing Model (CAPM),
J.L should reflect the asset's systematic (nondiversifiablel risk As explained in
Chapter 4, J.L will be given by

where r is the risk-free interest rate, and (j> is the market price of risk.6 Thus,
It is the risk-adjusted expected rate of return that investors would require if
they are to own the project. We will assume that a, the expected percentage
rate ofchange of V, is less than this risk-adjusted return J.L. (As we will see, the
firm would never invest if this were not the case. No matter what the current

level of V, the firm would always be better off waiting and simply holding on
to its option to invest.) We will let 8 denote the difference between It alld a,
that is, 8 = J.L - a. Thus we are assuming 8 > 0, and this plays the same role
as the corresponding assumption in the dynamic programming formulation
of Section 2.

The parameter 8 plays an important role in this model. We discussed its
role as an explicit or implicit dividend in Chapter 4; here we elaborate 011

those remarks. It will be helpful to draw upon the analogy with a financial call
option. If V were the price of a share ofcommon stock, 8would be the dividend
rate on the stock. The total expected return on the stock would be J.L = 8 -+- a,
that is, the dividend rate plus the expected rate of capital gain. If the dividend
rate 8 were zero, a call option on the stock would always be held to maturity.
and never exercised prematurely. The reason is that the entire return on the
stock is captured in its price movements. and hence by the call option, so there
is no cost to keeping the option alive. However, if the dividend rate is positive,
there is an opportunity cost to keeping the option alive rather thall exercising
it. That opportunity cost is the dividend stream that one fOlgoes hy holding
the option rather than the stock. Since [) is a proportil1nal dividend rall:. the
higher is the price of the stock, the greater is the flow of dividends. At some
high enough price. the opportunity cost of foregone dividends becomes great
enough to make it worthwhile to exercise the option.

For our investment problem, It is the expected late of rdurn frotllowning
the completed project. It is the equilibrium ratc established hy the capital
market, and includes an appropriate risk premium. If [) > 0, the expected
rate of capital gain on the project is less than /1. Hence lJ is all opponunity cosl
ofdelaying COllstmction of the project. and instead keeping the optio/l to im't'J1

alive. If lJ were zero, there would be no opportunity cost to keeping the option
alive, and one would never invest, no matter how high the NPV of the project.
That is why we assume 8 > O. On the other hand, if [) is very large, the value of
the option will be very small, because the opportunity cost of waiting is large.
As 8 _ 00, the value of the option goes to zero; in effect, the only choices arc
to invest now or never, and the standard NPV rule again applies.

The parameter 8 can be interpreted in other ways. For example. it could
reflect the process of entry and capacity expansion by competitors. (However.
in Chapter 8 we will discuss more complete models that endogenizc the pro­
cess of rivals' entry, and find that the resulting equilibrinm cannot be well
described by simply raising the 8 for each finn.) Or it can simply reneet the
cash flows from the project. If the project is infinitely lived, then equation (I)

can represent the evolution of V during the operation of the project, and lJ V

is the rate of cash flow that the project yields. Since we are assuming that [) is

(22)dx = /1 xdt + (J xdz.

goods to the extent that prices are correlated with the values of shares or
portfolios. However, there may be cases in which this assumption will not
hold; an example might be a project todevelop a new product that is unrelated
to any existing ones, or an R&D venture, the results of which may be hard to
predict.

We will assume in this section that spanning holds, that is, that in princi­
ple the uncertainty over future values of Y can be replicated byexistinl8ssetS.
With this assumption, we can determine the investment rule that maximizes
the firm's market value without making any assumptions about risk prefer­
ences or discount rates. Also, the use of contingent claims analysis will make
it easier to interpret certain properties of the solution. Of course, if spanning
does not hold, dynamic programming can still be used to maximize the present
value of the firm's expected flow of profits, subject to an arbitrary discount
rate. See the discussion in Chapter 4, Section 3 for more on the relationship
hetween the two approaches.

We follow the theory ofcontingent claims valuation outlined in Chapter4,
Section 2, but repeat some details for reinforcement and darity. Let x be the
price of an asset or dynamic portfolio of assets perfectly correlated with V,

and denote hy P,,,, the correlation of x with the market pOltfolio. Since x is
perfectly correlated with V, P,,,, = PI'",. We will assume that this asset or
portfolio pays no dividends, so its entire return is from capital gains. Then x
evolves according to
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F(V) = AVfl"

4 Characteristics of the Optimal Investment Rule

III = ~ - (r - {,)/(12 + J[(r - {,)/a 2 - H2 + 2,./a 2 . (24)

except that now r replaces p in the quadratic equation for the exponent Ill.
and therefore

by equations (13). () 4). (15), and (24). Some numerical solutions will help to
illustrate the results and show how they depend on the values of the various
parameters. As we will see. these results are qualitatively the sallle as those
that come out of standard option pricing models.

Unless otherwise noted, in what follows we set the cosl of the inveslmenl,
I. equal to I.,. == 0.04, ~ = (UM, and (J = 0.2 (at annual rates). (Note lhat
we do not need to know J1 or a. but only the difference between them. ~.)

Payout rates on projects vary enormously from one project to another, so this
value of 4 percent for ~ should be viewed as reasonable, but not necessarily
representative. As for (1, the standard dcviation of Ihe rale of return on the
stock market as a whole has been about 2() percent on average. Although
this represents a diversified portfolio of assets, it also includes the effects
of leverage on equity returns, and so might he a reasonahle numher IIlI ;111

average asset.
Given these parameter values, III = 2, V' = 21 "CO 2, alll) A = 1. Thus

the simple NPV rule, which says that the lirm should invest as long as r is
at least as large as I, is grossly in error. For this reasonable set of parameter
values. V must be at least twice as large as I hefore the linn should invest.
The value of Ihe finn's investment opportunity is F(V) = 1V 2 for V <: 2, and
F(V) == 1'- I for V > 2 (since the lirm exercises its option to invesl and
receives the net payoff V - I when V > 2).

Figure 5.3 plots F( V) as a function of V lor these parameter values, and
also for (J == (J and (1 == 0.3. In each case, the tangency point of F( V) with the
line V -- I gives the critical value 1". The figure also shows that the simple
NPV rule must be modified to include the opportunity cosl of investing now
rather than waiting, That opportunity cost is exactly F( V). When V < "',

F( Vl '> V ! and therefore V < ! + Fr V): the vallie of the proiect is less than
its filII cost, Ihe direct cost I plus the opportunity cost ,.( ,. ) IWhen" O.

V· = I, and F(V) = () for V :::: 1.1
Notc that F( V) increases when (J increases, as docs the critical valuc v'

Thus greater uncertainty increases the value of a firm's investment opporlu­
nities. but (for that very reason) decreases the amount of aclual investing thai
the firm will do. As a result, when a firm's market or economic environment
becomes more uncertain. the market value of the firm can go up, even though
the firm does less investing and perhaps produces less.

The dependence of V· 011 (J is also shown more directly in Figure <;.1.
Observe that V· increases sharply with a. Thlls ;'1I'{'stmelll is highlv semitil'/' to
voiGtilily ill project vollies. irrespective 0/investors' or mant/gers' risk pre/erellln.
tutti irrespective of the extent to which the riskiness of V i5 correlated with
lhe marlcet. Firms can be risk neutral. and stochastic changes in V can

(i)r<lidt = -~V F(V)dt +t:(d<lil.

Ihal is, Ihc rclurn on Ihe portfolio equals lhe per-period cash flow Ihal il pays 001 (which is
ncgative. since &V F'(V) mullt be paid in to mainlain the short position). 1>lus the ellpCcted rate
of capital gain. By substituting <Ii = F - F' ( ") V and expanding d F as before, one can see that
cquation (23) follows from (i). Also. note that inequation(i).& = jL-a and not r -a,SOone IIItIIl

still have an estimate of the risk-adjulted expected return that applies to v. This is an eumpte
of the "equivalent risk-neutral valuation" procedure discussed in Chapter 4. Section 3.A.

"This result was first dcmonstrated by COil and Ross (1976). ALo;o. n"lc Ihat equation (23)
is lhe Bellman equation for the mallimization of the net payoff to the risk-free portfolio that we
c"nslruclcd. Sincc the porlfolio is risk·free. Ihe Bellman equalion for Ihal problem is

rate r replaces the discount rate p. The same boundary conditions (lOH12)
will also apply here. and for the same reasons as before. Thus the solution for
F( V) again has the form

Let us assume that spanning holds. and examine the characteristics of the
optimal investment rule and the value of the investment opportunity, as given

The critical value V· and the constant A are again given hy equations (14)
and (15).

Hence the contingent claims solution to our investment problem is equiv­
alent to a dynamic programming solution. under the assumption of risk neu­
trality (that is, the discount rate p is equal to the risk-free rate ).'1 Thus whether
or not spanning holds, we can obtain a solution to the investment problem,
but without spanning. the solution will be subject to an assumed discount rate.
In either case, the solution will have the same form, and the effects of changes
in (1 or {, will likewise be the same. One point is worth noting, however. With­
out spanning, there is no theory for determining the "correct" value for the
discount rate p (unless we make restrictive assumptions ahout investors' or
managers' utility functions). The CAPM. for example. would not hold. and
so it could not be used to calculate a risk-adjusted discount rate in the usual
way.
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We have scaled rand 6 by 2/(12 because, as the reader can verify by substituting
Pt =q'/(q' -1)intoequation(16),q' must satisfy

,\s thl: flgUiL ShOW':\l the iiiUhipk: I:; laigL '"hen;~ h ;,iit,lii ui i .:., t'Iif,L

These comparative statics results arc the same as those that apply to

financial call options. Our option to invest is analogous to a perpetual call
option on a dividend-paying stock, where V is the price of the stock, J i~ the
(proportional) dividend ratc, and I is the exercise price 01 the option. The
value of the call option on the stock and the optimal exercise rule will dcpelld
on the parameters a, &, and r as illustrated by Figures 5.1-5.7. II

We repeat that it is important to be careful when interpreting eumparat ive
statics results, because different parameters are unlikely to be independent of
each other. For example, an increase in the risk-free rate, r, is likely to result

than in the standard model. In the standard model, an increase in the interest
rate reduces investment by raising the cost of capital; in this model. it increases
the value of the option to invest and hence increases the opportunity COSt of
investing now. (Figure 5.7 shows the dependence of V' 011,. for 8 equal to
() 04 and (I1)X l

Once again in this calculation we held 8 fixed as r increaseo. If instead we
hold ex fixed, then 8 increases one for one with r. Now a lower r reduces 131 and
increases the critical level V'. In this sense. a lower interest rate discourages
investment. This is a pure manifestation of the option idea: a low interest
rate makes the future relatively more important. therefore it increases the
opportunity cost of exercising the option to invest.

Figure 5.8 provides another way of seeing how the optimal investment
rule depends on the parameter values. It also lets us cast our results in terms
of Tobin's q. Here we use the "value of assets in place" definition that ignores
the opportunity cost of exercising the option, as explained in Section 2(c)
above. Then q' = V' / I = f3./({J, - 1) is the critical value of this q. that is,
the multiple of I required to invest. The figure shows contours of constant q'
plotted for different values of the parameter combinations 2r/ (12 and 2&/(12.

2: = q' (26)
a- a 2

q'

q' - I

~ ,

i,
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V -I

where at each time t, ft is drawn from a normal distribution with zero mean
and unit standard deviation. (Note that the coefficient 0.0577 = 1!.211/ v'1"2 is
the mollthly standard deviation.)

Since Vo = I = I, the standard NPV rule would call for investing im­
mediately. However, F(VII) = 0.25, so Vo < I + F(Vo), and the firm should
wait rather than invest. In Figure 5.9, the firm happens to wait approximately
five years before V reaches V· = 2. This waiting time can vary considerahly
from one sample path to the next. In the sample path shown in Figure 5.1 () lor
example. the firm must wait much longer-nearly 211 years-before V reaches
the critical value of 2. 13

5 Alternative Stochastic Processes
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Firan 5.9. Sample Path ()f Ft V) and V - I

The use of a geometric Brownian motion as a model for V is comcnicnt,
but in some cases may not be realistic. In this section we will examine the
value of the investment opportunity and the' optimal investment rule whcn
V follows alternative stochastic processes. We will first consider the case of a
mean-reverting process, and then a Poisson jump process.

.--------111 •1.5 i S.A Mean-Reverting I)rocess
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so that the expected percentage rate of change in V is (I/dt)£(dl / I 1=

J1(V -I'},and the expected absolute rate of change is (I/dl) fldl') = t}'- V­

J1 1"2, a parahola that equals zero at V = 0 and V = i' and has a maximum
at V = Ii /2. As we will see, an advantage of this particular process is that we
will be able to obtain an analytical solution to the investment problem,

To lind the optimal investment rule. we will use contingent claims analy~is.

Let I.L be the risk-adjusted discount rate for the project (that is, /-L reflects the
systematic risk in the stochastic fluctuations in V). In this case the expected

(26)d V = '} (II - I') I' d I f IT I' d z.

Suppose V follows the mean-reverting process
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FIpn 5.10. Anolher Sample Path of F(V) and V - I "The eXflCclation and variance 01 this "waiting time" can be compuled analylically, We will
not need these expressions. but refer the interested reader to some simple cases in IJixi. I I~nil,
pp. S4--S7). and the more ritoroustheory in Karlin and laylor (1981, pp. 242-244) or Harri,..n
(t985, pp, 11-14)
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In practice, most firms do not enjoy monopoly rights to invest, hut instead
must consider the possible entry of new competitors, or expansion of existing
ones. This raises a fundamental douht concerning our earlier conclusions.
Thc opportunity to wait, and its value, depend on what the firm's competitors
do. With frce entry, should this value not be reduced to zcro? Would that not
restorc the Murshallian criteria comparing price to the long-run average cost
in the case of investment, and to the average variable cost for disinvestment?
Thus the reader might suspect that the theory of an individual firm would
not survive an extension of the scope of the analysis to the level of industry
equilibrium.

In this chapter and the following one, we take up thesc questions. The
answers are largely reas.'iuring. What happens to the value of waiting depends

[

not only on the natureofcompetition, but ..Iso on the nature of the uncertainty.
We find that when uncertainty is firm-specilic, a firm's value ofwaiting survives,
and our firm-level analysis can readily be extended to the industry eqUilibriu~:r
For aggregate or industry-wide uncertainty, the value of waiting for any onJ
firm does drop to zero, but that does not restore the Marshallian criteria of

G.
rice.cost comparisons. The optimal investment and disinvestment threshold

prices diller flOm custs just the same way as they did in our finn-level analysis
of Chapters 5-7, albeit for a different reason. We can no longer specify the
stochastic process of the price exogenously. Price is an endogenous variable of
industry equilibrium. We must trace the uncertainty to a deeper level, namely,
the demand and cost conditions. The endogenous feedback of new entry on
price is what generates the gap between the Marshallian and the optimal rules
when uncertainty is industry-wide.

The earlier analysis of the monopoly firm also serves a useful pedagogical
purpose, as well as a suhstantive one. All of our industry-level analysis is
conducted using the same techniques (dynamic programming and contingent
claims analysis) that were developed and illustrated in the preceding chapters.
Thus that work provides a simpler setting for readers to become familiar with
the ncw methods.

This chapter concerns the basic theory of industry equilihrium. In other
words, we take the firm's decision model of Chapters 5-7, and build it as di­
rectly as possible into a model of industry equilibrium. Then in the nett chapter
we take up various extensions and implications. We allow for heterogeneity
among firms, and we consider a simple example of imperfect competition
among a small numller of firms in the industry.

Finally, and perhaps most importantly, in Chapter l} we also examine
issues of policy regarding investment. If firms' irreversible choices under un­
certainty are significantly influenced by the option value of the status quo

1 The Basic Intuition

Before turning to the mathematical models, we enlarge on the intuition lor
the results to come. First suppose the uncertainty is firm-specific. Thus dif­
ferent firms experience independent shocks to demand (for example, a shift
of fashion in an industry with differentiated products) or cost (for example, a
chance improvement in entreprencurial skills). As in the prcvious chapters.
suppose each firm's shock has positive serial correlation; in actu<ll models
we will specify these shocks as Brownian motions. Even though the firms arc
identical ex ante, a firm that experiences a favorahle shock docs sneak a lead

2·1()Dynamic Equilibrirmr in a Competitil'C Industry

and therefore characterized by considerahle inertia, should the govcrlllllclIl
attempt to encourage investment? How will various policy instruments allect
investment? In particular, what will be the effect of government policies to
reduce uncertainty (for example, through the use of price controls)? What
will be the effect of uncertainty conccrning thc govcrnmcnt's own ad ions
(for example. uncertainty over future tax rates and regulah Iry changes)? Such
questions must be examined at the industry level if they are to be useful guides
to policy in many practical situations; therefore these chapters are the right
place fur their study.

Before we start on this program, we should say a lew words ahout the
nature of irreversibilities in relation to industry-wide and firm-specific forms
of uncertainty. Investment is partially or totally irreversihle when some or all
of its costs are sunk. In Chapter I, Section 3 we offered SOIllC gelletalrcasolls
why this happells. Perhaps the most prominent was the specificity of the plant
and equipment itself. This applies with greater force ill the case of indllsi ry­
wide uncertainty than for firm-specific unrertainty. A sted plant cannol he
used outside the steel industry. If one steel firm suffers an idiosyncratic lIeg­
ative shock. it can sell its plant to another firin and /!.c1 fairly good vahll' tor
it, so the irreversibility is less severe. Ilowever, if the whole industry sullers a
negative shock, then the resale value of the plant is small and the irrevtrsihil·
ity is large. Thus we should expect that our theory has greater significance in
the context of aggregate uncertainty. Of course, even for linn-specific shocb.
some investment expenditures arc sunk, for example, any research or explo­
ration costs incurred in the process of discovering the firm-specific ralldolll
shock. Also, even nonspecific capital (such as automobiles. computers, and
office equipment) is subject to a loss in resale value due to asymmetric infor­
mation about product quality (that is, the "lemons· prolllem, Illustrated Ily
Akerlof (1970)).

i
I r
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2 Aggregate Uncertainty

Despite the simplicity of the underlying intuition, the general model of un­
certainty is quite difficult to set up and solve formally. The ideas are easier to
explain by constructing some special cases that together span the complexity
of the general one, so that is how we will proceed. In this section and the
next, we consider only the industry-wide shock Y. Then, in Section 4, we deal
with purely firm-specific uncertainty. Finally, some insights that do depend

other firms enter, the industry supply curve shifts to the right, and the price
rises less than proportionately with Y. Therefore price is a concave function
of Y, and then so is the profit flow. Greater uncertainty in r now reduces
the expected value of investing relative to that of not investing. That is why
the firm requires a higher current profitability (in excess of the Marshallian
normal return) before it will invest.

We should stress the similarity as well as the difference between the two
scenarios. In each, the underlying symmetric demand shock translates into an
asymmetric profit flow shock; but this happens in very different ways in the two
cases. In the case of firm-specific uncertainty, the downside of the profit shock
is cushioned by the Possibility of waiting. Thus greater uncertainty makes
waiting more valuable relative to investing at once. In the case of industry­
wide uncertainty, anyone firm in the mass of competitive potential firms has
a zero value of waiting. However. the upside profit potential is cut off by the
prospect of entry of other firms. llterefore greater uncertainty reduces the
value of investing relative to that of not investing at all.

In reality there are several other factors that can affect the convexity
or concavity of profit flows as a function of the underlying shock variable. If
the firm can adjust some variable inputs instantaneously. then its profit flow
becomes a convex function of the price. as we saw in Chapter 6, Section 3. In
addition, in Chapter 11 we will see that when the firm can add to its capital
stock. and its output now is given by a production function, there can be
other ways by which the marginal profitability of an incremental investment
becomes convex in price. However, the above intuition still operates similarly.
For example, with firm-specific uncertainty, the possibility of waiting cuts off
the downside risk and makes the profit flow an even more convex function of
the underlying shock variable. In most of Chapters 8 and 9, however, we will
leave aside these additional sources of convexity. We will define each firm as
the possessor of a technology to install and operate a single discrete project
of fixed size, and focus on the two kinds of asymmetries explained just above.

(2)

253

(3)

p = Y D<Q).

dY = a Y dt + (T Y dz.

Dynamic Eqltili"rium in a Competitive Industry

in an essential way on the joint presence of the two kinds of uncertainty ale
examined in the context of a simple hut general model in Section 5.

When all uncertainty is industry-wide, the multiplicative factor X in the
aeneral demand curve (I) is constant, so we can just set it equal to I. Then
the industry's inverse demand curve becomes

The aggregate shock Y will follow the geometric Brownian motion process

On the production side, we assume that there is a large number of
risk-neutral competitive firms. Each firm can undertake a single irreversihle
investment, requiring an initial sunk cost I. Once this investment is made, il
yields a flow of one unit of output forever with no variahle cost of production.
We embed such firms in an industry by supposing that each unit of outl1ul
is very small relative to the total industry output Q. so that each firm is an
infinitesimal price taker. When Q firms are active. the short-run equilihriulll
price can be determined from equation (2) above.

As we discussed before, this is the simplesi continuation of the m(ldd
of Chapters 5-7 that serves our present purpose. Later and in Chapter 9, we
introduce various generalizations, where each firm has some variablc cosl,
short-run output variability, exit possibilities, etc., where the shocks affect
demand in more general ways. and where the industry has some imperfect
competition.

Th set the stage for the competitive industry equilihrium, think of the
usual textbook static model. The industry price-a single number--is para­
metric to each firm. The sum of the individual firms' optimum quantity re·
sponses 10 the price constitutes the industry's supply funct jon. The equilihrium
price is determined by the condition equating industry dcmand and supply
In our dynamic world with uncertainty, the corresponding equilibrium con.
cept is one of rational expectations. Each firm takcs as exogenous the whole
stochastic process of the price. So we start with a price process, let all firms
respond to it, and then find the process that clears the market at each instant.
This is a function or a mapping that takes us from one stochastic process to
lIIIOther. We have an equilibrium if we get the same price process that we
started with. or in other words, a fixed point of the mapping.

Since a stochastic process as a whole is a complex mathematical object-­
a vector in an uncountably infinite-dimensional function space-finding such
• Jbed point in full generality is far too difficult. Luckily, the solution to our
problem can be found using a much simpler method.

Industry Equilibrium252
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This looks like a smooth-pasting condition, but it is not a consequence of any
optimization. Such a condition holds at any reflecting barrier for a diffusion
process.6

Now we can solve for B from equation (7) to get

B = _pi-II, / (13l li ).

Note that B < 0; as explained earlier, the barrier cuts off some upside price
potential, so the correction to the value is a reduction. Substitutilll for B into
(6), we have

To understand the solution more fully, we must go into the details of the
fixed-point process for constructilll the equilibrium. Consider a firm contem­
plating entry. Write f( P) for the value of its option to enter. As in Chapter 6,
this takes the form

f(P) = A I'll"

where A is a constant to be determined, and 131 is as above. If the firm decides
to enter when the price is P, it pays the investment cost I and receives in
return an asset that we just valued at v( Pl. The optimal entry threshold /"
satisfies two familiar conditions. First, value matching:

v(P) =!.. __1_ pfJ. pI-III
8 8131

(8) fer) = v(P') - I,

2.8 Equilibrium

The quick way to find the industry's equilibrium is to use a dynamic zero excess
profit condition. At P, the common entry threshold for all firms, each firm
is just indifferent between entering and staying out, so the value of being in,
v(P), must exactly equal the entry cost I. Using equation (8) above, this gives

and second, smooth pasting:

.f'( r) = v'( p').

Using the functional forms for the functions I( /') and v( P), we have

A(r)'" = B(r)'" + r /8 - I,

and
131 A(r)tI,-1 = 131 B(p,)tI, 1 + 1/8.

Observe two features of the solution: the barrier P affects the solution only
via the constant B in the value function v( P), and the constant A in the
option value function f(P) responds one for one to changes in B. These have
important implications for the equilibrium.

Note that we have already solved for the constant B in terms of the assumed
upper barrier P, but some expressions convey more insight when B is retained
as such.

These two equations can be solved for the threshold !" and the

stant A; we have

( Ill)

( II )

po _ 131
- 131 - 1 8 I,

IA= B+ - (r)l-tl,
131 8

I= _ [(r)l-fJ, _ pl-~l]
13l li .

and

'See Malliaris and Brock (1982, p. 200), or OWl (19933, Section 3.5).

p=~ lJI. (9)
131 - I

r
-----.../

Most remarkably, this is the same entry price as that for a unit-sized mo­
nopolist firm facing the same demand process; compare this to equation (9)
of Chapter 6. The two situations differ in two ways. The monopolist of Chap­
ter 6 was not threatened by entry, so there was no upper barrier on the price

lprocess; now there is. However, the monopolist had a positive option value
of waiting, while any of several identical potential firms of this chapter must
have zero value of waiting. It so happens that the two differences exactly offset
each other.

This coincidence between a competitive firm's and a monopolist's entry
threshold is in the context of a very special example. In Chapter 9 we will find
a very general result of this kind-a competitive firm can make the correct
investment decision by acting myopically in the matter of future competitive
entry, and acting as if it were going to be the last firm ever to enter this industay.
That result also rests on a similar exact offset of two effects, one on the value
of investing and the other on the value of waiting.



P/I = {3,.5/({3, - I),

for r =0.05, a = 0 and 0.03, and 0 =0,0.2, and 0.4. Note that when a = 0 = 0,
the return P/ I equals the Marshallian return, that is, the interest rate r =
0.05. This is also the case whena =0.03 and 0 = O. (As discussed in Chapter 5,
when a is positive there is a value to waiting even if there is no uncertainty,
and indeed in this case {31/({3. - l) = 2.5, but since .5 falls as a increases, the
return remains equal to r.) For either value of a, as 0 is increased to 0.2 and
004, f3 falls and the required return P/ I rises to about two or three times its
Marshallian value. Hence the general finding from Chapters 5 and 6, that the
firm's optimal decisions differ substantially from the implications of the text­
hook present value approach, has an exact parallel for a competitive industry.
Its equilibrium differs substantially from the picture offered by the ManhaI­
Iian theory presented in most elementary and intermediate microeconomics
textbooks.

it will earn a normal return on its sunk cost. However, we saw in Chapter 6
that it does not invest until the price rises to P*, which is {3,/({3. - l) times
Po. We explained this in terms of the option value of waiting.

Now we see that a unit-sized competitive firm also waits until the price
rises to the same level, even though its option value of waiting is zero. The
explanation lies in the difference between the price processes in the two cases.
The competitive firm's price process has an upper barrier, which reduces its
expectation of future prices and returns. Specifically, since the firm knows
that all other firms face the same choice and make the same decisions, the
price will never rise above the level that prevails at its instant of entry; the
current price when it enters is not the average but the best price it will ever

~
get. If competitive firms adopted the rule of entering when the price reached

... J'... they would earn a normal return only at those instants when entry was® taking place-they would earn lower returns at all other instants. The average
return over time would then be insufficient to justify the initial investment
expenditure. On the other hand, when the entry threshold exceeds Po, each
lirm will experience some period of supernormal returns and some periods
of subnormal returns. The equilibrium P is exactly the level that ensures a
normal return on average.

Since the entry threshold cum industry equilibrium price coincides with
the threshold for a monopoly with the same parameters a, (J,", and .5, we need
not present detailed numerical calculations for the competitive equilibrium
case; instead we refer the reader to those in Chapters 5 and 6. However, a

few summary numbers are useful. Thble 8.1 shows {3. and the current rate of
return on investment at the threshold,
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a (J fJ. P/I
------

0 0 00 0.050

0 0.2 2.16 (1.093

0 0.4 1.44 0.165
-------

(Un 0 1.67 11.11')11

0.03 0.2 1.35 0.077

0.03 0.4 1.16 0.143

The ahove hasic model closely followed that of the monopoly firm in <. ·hap­

ter 6, and gave us very analogous results for the competitive industry with
aggregate uncertainty. Most of the extensions of this model are left for Chap­
ter 9. In this chapter we take up just one that tits more naturally here _We
introduce exit, and construct a model that closely follows that of the mOllopoly
firm's entry lind exit decisiolls in Chapter 7. Once again. the resulls lor thl'
competitive industry with aggregate uncertainty arc thoroughly parallel.

For exit to be a meaningful option, we need two conditions. First. the

operating profit flow must sometimes become negative; we make this possible
by introducing a variable cost C for each unit-sized firm. Second, temporary
suspension of operation and resumption without a cost penalty must hc filled
out; we do so. We also introduce a lump-sum cost of exit E. As before. this
can comprise any legally required severance payments or costs of restoring
land. It can also be negative (but numerically less than cost I), represcnting

any nonsunk portion of the entry cost.
Now the intuition is that the exit of other firms will generate a l1oOf-a

lower reflecting barrier-on the price process, just as their entry generated
a ceiling-an upper reflecting barrier. Each firm will have rational expeetll­
tions about the price process it faces, namely, a geometric Brownian llIotion
between these two barriers. The firm's own entry and exit decisions will again
take the form of upper and lower thresholds 011 the price. The equilihrium
levels of the two barriers will be found from a fixed-point argument: each
firm's thresholds should equal the barriers generated by the behavior of all

firms in the industry.

3 Industry Equilibrium with Exit

Dynamic Equilibrium in a Competitive I"dustry

'IlII* 8.1. Required Return for Competitive E"try

Note: r =0.05

";

'!';

~.

I
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Regard these as a pair of linear equations in At, ~. The coefficient matrix

(
p,-I -112-1)

:: EP,-I ::;t12~1
is nonsingular as long as P > E. Then the only solution is AI = ~ = O.
Therefore the value of an idle firm is identically zero, as it should be, given
competitive conditions and identical firms. This completes the solution.

3.A Entry, Exit, and Price in the Copper Industry

We now return to our example of entry and exit in the copper mining industry
from Chapter 1, restating some of the numerical results to give the readers
a better feel for the magnitudes involved. In fact, the use of industry data to
illustrate the story of a firm having a monopoly right to invest was something
of an anomaly in Chapter 1; now the same numbers have a more satisfac­
tory interpretation in the context of industry equilibrium. In the central case
studied, we assumed that the capital cost of building an average-sized mine,
smelter, and refinery (producing to million pounds 01 copper per year) was
I = $20 million, and the cost of site restoration upon abandonment was E =
$2 million. The variable cost was C = $0.80 per pound, hut was allowed to
vary around this figure. The price volatility parameter a was 0.2 in annual
units, and was also allowed to vary around this range. The riskless interest
rate was r = 11.1)4, and the return shortfall was /) = 0.04. With these numbers,
the Marshallian entry threshold price would be $0.88 and the exit threshold
$0.192. As shown in Table 8.2, however, the correct entry and exit thresholds
are $1.35 and $0.55, respectively. The table also shows the Marshallian and
I he actualthrcshulds for other values of C and a.

Figures 8.2 and 8.3 show, for the central case of C = $11.80 per pound
and (J = 11.2, sample paths for the price of copper. Observe that this price
fluctuates as a geometric Brownian motion between the upper and lower
reflecting barriers, which are the entry and exit thresholds of $ I.35 and $0.55.
These thresholds are shown in the figures as horizontal lines; also shown
are the Marshallian thresholds of $0.88 and $0.79. (In the figures, time is
measured in years, and each year was divided into 50 increments for purposes
of generating sample paths.) Figure 8.2 shows a "fortunate" (from the point
of view of a copper producer) sample path, in which the price spends much of
the time at the upper end of its range, while Figure 8.3 shows an "unfortunate"
realization.

These figures show particular realizations of price, but we could ask what
percentage of the time the price should be expected to stay in different reSions
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TableS.2. Entry and Exit Thresholds in Copper Mining

(Note: see text for parameters)

Upper threshold Lower threshold

c (J Marshallian Correct Marshallian Correct
---~-~---

0.8 0.1 O.M8 1.12 11.192 11.63

0.8 11.2 0.88 1.35 11.192 0.55

0.8 0.4 0.88 1.15 1I.7lJ2 11.45
- -
0.4 11.2 0.48 O.BII 11.392 1I.2li

0.6 11.2 0.68 IJ'6 11.592 11.40

0.8 0.2 0.88 1.35 11.192 11.55

l.1I 11.2 1.08 1.60 0.992 0.10

of its range ovcr the long run. We can answer this question by calculating the
long-run stationary distribution for price. Begin hy ohserving that I' follows
the geomctric Brownian motion of equation (4) hetwecn its renecting harrier s
E and P. Therefore, using Ito's Lemma. we know that p '= log P follows a
simple Brownian motion with the drill parameter cr' "" cr ~ ,,2 and lhe
variance parameter (J, between corresponding renect ing harriers !!.. ~- It 'g I'

and p = log P. Now we can use the result of Chapter 3, Scction 5 til lind
the long-run distribution of p. It is an exponential distribution, with dcnsity
KeY', where y = 2 a'/0 2 , and the constant 01 proportionality K is chosen
to achieve a total probahility mass of unily With Ihis, il j, caw 10 ",klll;.h'

what proportion of time p spends in various subsets 01 the range (JI. Pl lilt'
results can then be translated into the corresponding ranges for P~

For our base case parameter values, we find that, on average. price will he
between the uppcr M~lrshallianand entry thresholds of $O.R8 and $1.35 ahout
58.5 percent of the time. Thus more than half the time, copper producers
will be earning what in traditional microeconomic analysis we would call a
supernormal profit. Price will be betwecn thc two Marshallian thresholds of
$0.79 and $11.88 about 11.3 percent of the time (in which case we can say
that firms are earning positive but subnormal profits). Finally, price will be
between the exit threshold of $0.55 and the lower Marshallian threshold of
$0.19, so that firms are incurring losses, about 30.2 percent of thc time.

These figures show very dramatically how the dynamics of a competitive
industry under conditions of uncertainty will differ from the textbook picture.
For almost 90 percent of the time, we expect the copper industry to be in a



•Recall that we are nol giving a format rigorous Irealment of this.

We have interpreted X as an idiosyncratic demand shock (random fluctuations
of taste shifts giving rise to price premia for slightly different varieties in the
industry). What ultimately mattcrs is the shock to profitability, and we could
also think of X as a technology shock that appears in a reduced form in the
formula for the firm's profit flow after the instantaneously variable choices
have been optimized out, as di!>Cus.<;ed in Chapter 6, Section 3.

An example will help fIx the idea. Consider a pharmaceutical company
that can develop a new drug by incurring the research cost R. This yields an
initial estimate of its efficacy and profitability. The firm patcnts the drug. but
unless the profit estimate is sufficiently high, it will not incur the additional
investment expenditure I th~lt is necessary to begin production. Over time the
profit estimate may increase as new uses are found for the drug, or decrease
as other drugs to treat the same condition are discovered hy other firms.

We characterize the competitive equilibrium of such an industry in the
long run. There are numerous competitive firms facing independent shocks,
and there is substantial uncertainty and volatility at the firm level. However,
different lirms' shocks are independent. and the operation of the law of large
numbers ensures that industry aggregates are nonrandom.K Thus a nonran­
dom total volume of output can be produced by firms whose identities change
through time but whose aggregate population distribution rcmains stationary.
However, the lirm-Ievel uncertainty leaves a mark on the industry equilibrium:
the parameters of the distribution of active firms, and therefore the aclual val­
ues at which the nonrandom industry quantity and price settle, do depend on
the exlenl of uncertainty faced by each firm.

The idea that relatively tranquil industry-wide conditions conceal much
firm-Icveluncertainty has been emphasized in recent empirical work. Davis
and Ilaltiwanger ( 1990) and others have demonstrated quite impressively lhe
large gross hirings and firings thai underlie small net changes in employment
in the U.S. economy. The models that are constructed for applications of
this kind generally contain too much context-specific detail to let the general
intuition stand out. Our simple model can help the reader develop a better
conceptual understanding and more general intuition lor such phenomena.

We begin by specifying the nature of uncertainty in X so as to fit with the
firm's two stages of decisions. A new entrant gets an initial draw of X from a
known distribution. Thereaftcr its X evolves as a geometric Brownian motion

2hl )

(27)IJIX- D(Q) =-- (I' -~ A -- u) I.
IJI - I

Q == ! a
2 P(t! - 1) + u fl - (r + A) = ()

where IJI is the positive root of the fundamental quadratic

In the long-run stationary equilibrium with a large and ((Instant number Q
of active firms, each new entrant or waiting firm takes this Q as given. lIs
profit flow is X D( Q). It continually observes X, and decidcs when to p<ty its
investmcntl.ost I and becolHt: all achvl: plUdul.Ci. Thi~ ie, [lIl mally iJclJii,.d :"
the basic single-firm model we studied in Chapter 0. Section I. Equation Ill)

of that section gave us the price threshold p. that triggered investment. In
the notation of this chapter, that becomes a threshold X- on the firm's shock.
and the defining equation becomes

4.A Th.. Activation Decision

The condition that ensures convcrgence of the cxpected prolit flow is,.+A :> u;

note that the Poisson death probability acts like a discount rate in achieving
convergence, as we saw in the discussion of Poisson processes in Chaptcr 1,

Therc is free cntry into the industry. and anyonc can get the initial lhaw
by paying R. lIowever, there is no obligation to start production at oncc.
A further sunk investment I must be incurred to activate the process, and the
firm can wait to see if X evolves to a more favorable Icvel hcfme making this
irreversible commitment.

We will characteri7.e thc long-rull stochastic cquilihrium of such an in­
dustry. In fact we will postulate such an equilibrium, and then detcrmine
endogenously the various stationary magnitudes (price. number of firms, etc.)
that constitute the equilibrium. Suppose N is the nonrandom stream of new
entrants who pay the fee R and learn their initial X. Then their shocks will
evolve independently and stochastically. A nonrandom flow M will real'll thc
activation decision. We also want to keep the total numher of active firms. Q,

constant. III permit this, we assume that alllirms. whether waiting or active.
face an exogenous Poisson process of death with paramcler A. This proccss
is also indcpendent across IinllS. Thcn in a stationary cquilihrium !If Illuq
equal A Q.

All uncertainty being idiosyncratic, we spccify that cach firm is risk neu­
lral and makes its decisions to maximize its expected net worth. Let r denote
the risk-free interest rate at which future profit flows are discounted.

Dynamic Equilihrium ill a Compelili,·/? IlIdu.wy

(26)

Il/duslT)' Equilibrium

d X = a X dl + a X dz.
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4.C The Distribution of Firms

Even now the argument is not complete. The number of active firms Q
arises from a complex chain of initial entry decisions, independent random
fluctuations of the firms' shock variables X, subsequent entry decisions, and
independent random deaths. We must show how these interact in a consistent
way to produce the industry's equilibrium Q.

(.11 )

(1~j

~ ~j;]
(1

q = ~ [I

~ o2t/J"(x) - I!t/J'(x) - 'At/J(x) + ,R(X)"'" II.

/' '-~ ~ [ I I- ~ Jdt] ,

Nt/J(x)dh = NR(xldh + p(\ - Adr) N¢(x - dh)dh

+q(l-'Adt)N¢(x+ dhldh

t/J(x) = C\ explYI xl + C2 exp 1Y2 xl + t/JlI(X).

This equation is slightly different from Ihe onc of Chapters 5-7 because
it pertains to a simple rather than geometric Brownian motion. However, Ihe
method of solution is very similar. It is easy to verify that the general solution

has the form

Now consider the segmenl centered at x. It slarls 0111 with N¢(x)tlh

firms. In the next unit time period dr, all of these move away wilh either
Poisson or Brownian shocks. New entrants, as well as firms from the lefl and
right, arrive to take their places. Figure 8.5 shows these Ilows schematically.

For halance we need

Cancelling the common factor N dh, expanding the t/J(x ±dh) on the right hand
side by Thylor's theorem, and simplifying, we gel the differential equation

where v = u - ! 0 2 . Also, both groups suffer exogenous "deaths" under the
Poisson process with parameter 'A.

Begin with the waiting firms, which are distributed over the range
(-00, x*). Let N t/J(x) denote the density of such firms at location x; thc
factor N just scales this hy the rate of entry and leads to a simpler equal ion
for t/J(x). For the density to remain constant through time, the rate al which
firms arrive at x (having received posilive shocks from helow or ncgative
shocks from ahove) must equal the rate at which lirms al x move away (hav­
ing received shocks of the Brownian motion process or Poisson death). We
express this equation of "balanced flow" of firms in a more precise way.

For this purpose, we use the binomial approximation to Brownian 1111l·

tion that proved so useful in Chapter 3, Section 2(h). Divide time into short
intervals of duration dr, and the x space into short segments, each of length
dh = 0 Jdi. Of the firms located in one such segment. in one short lime
interval a proportion 'Adr will die. Of the rest. a fraction J1 will movc OIlC

segment to the right. and a fraction q will move to the lefl. where

\:.,

"

(31)dx = v dr + 0 dz,

Recall the actual life history of anyone firm that has just paid the entry cost R.
It begins with an X randomly dra\\n from its known distribution. If the initial
X exceeds the threshold X-, the firm pays the investment cost I and becomes
an active producer at once. Otherwise it lets its X evolve, and activates if and
when X- is reached. Throughout this process, the firm faces a constant and
exogenous probability rate 'A of death.

Such new entrants arrive at rate N. The full stochastic dynamics of each
of them-the probahility that it will be alive and occupy a position X at time
r---<:an be examined using the Kolmogorov equation, which we developed in
the Appendix to Chapter 3. Here our aim is more limited. For industry equi­
librium. only the total numbers of firms in various states matter-how many
are active, and how many are waiting with what values of X. Therefore the
law of large numbers allows us to restrict attention to a long-run stationary
equilihrium. This means that the rates of Poisson death by exit, and of activa­
tion, arc constant through time. Likewise, the numbers of firms with various
current levels of X are constant through time. Of course the actual identities
of the firms occupying these positions keep changing, but for our purpose any
firm is like any other with the same X.

The method of calculating this long-run distribution of lirms is the same
as that of Chapter 3, Section 5, hut now we must include two new features,
namely. fresh entry and Poisson deaths. It proves more convenient to work
in terms of the logarithm, x = log X. Let g(x) denote the density function
of the initial draw of x, and GCl) the corresponding cumulative distribution.
Note that the range of x extends to -00 to the left. Let x· = log X-. Of the
newly entering firms, Nil - G(x·)] immediately get a draw large enough to
justify activation. The rest join the mass of firms that do not complete the
second step of committing the investment cost at once, hut wait to reach the
activation threshold.

For both groups, x continues to evolve. Applying Ito's Lemma to (26),

we see that x follows the Brownian motion
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The constant C is to be determined from the condition t/J (x') = O. This yields

l
x- N ..

M == N t/J(x)dx = _Y- eX -,
-00 A+ \I - ! 0 2 Y - 1

The rate of activation is

(3h)1'= XYQ',

Now we cxaminc industry equilihrium in a more general mudel wherc the two
kinds of uncertainty. firm-specilic and industry-wide, cocxist. "Ib allow for the
added notalional and mathematical complexities of the joint uncertainty, we
make some simplifications in each. Our trcatmcnt closely follows CahalkJo
and Pindyck (1992).

We assume that the firms arc risk neutral (or thai the industry-widc rbk
is uncorrclated with the risk of the economy's capital market as a whole).
leaving the more general case for the reader. We :;uppu~e tkit the in"!!""

demand is isoelastic; thus the demand equation ( I) becomes

where I/f is the price elasticity of demand. We also omit the second activation
stage from the above model of firm-specific uncertainty; thus I = () and
.r =0.

As before. each firm has the capacity to produce a unit of output and
has no variable costs of production; thus. P is also its profit flow. Also as
before. we can think of this as the reduced form of a morc gencral structurc
in which any variable inputs (those without irreversibility or adjustmcnt cosl)

are chosen at their optimal levels. We continue to treat firms as infinitesimal
and their number as a continuous variable; then Q equals this number.

The various algebraic expressions get complicated. but some gencnll
principles stand out. When the firms in an industry are subject to specific
shocks. the investment decisions of each are importantly influenced by the
option value of waiting for better realizations of its own shock. At the indus­
try level. the shocks and the responses of firms can aggregate into long-run
stationary conditions, so that the industry output and price are nonrandom.
However, the equilibrium levels of these variables arc affected by the param­
eters of firm-specific uncertainty. Also. behind the aggregate certainty lies
a great deal of randomness and fluctuations: firms enter. invest. and exit in
response to the shocks to their individual fortunes.

In reality. industry-wide and firm-specific shocks occur together. There­
fore we will proceed to combine the models studied thus far in this chapter
into a single general model that encompasses both kinds of shocks. Then in
Chapter 12 we will consider an application to some real data.

S A General Model
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(35)

(34)

AQ = Nil - G(x') - !02t/J'(x·) I

1 [- ('j" ]t/J(x) = eX-x _ eY X-.f e f - x •

A + \I - ! 0
2

From this we can calculate !\Ome aggregates for the waiting firms. Their
total number is

[
A+ II - ! 0

2
Y ]AQ=N I-e,'-i 2 .

A+ II - ! 0 2
2

This allows us to calculate the rate of new entry N. either relative to the mass
of active firms Q, or relative to the total mass of active and waiting finnsr
(Q+ M).

1 0 2 (Y _ 1)
-!02Nt/J'(x')=N ~ e'-

2 A+ \I _ ! 0 2
2

We could similarly find the distrihution of the mass of active firms. These
will extend over the entire range x E (-00. (0). because some firms may
have activated and then had their X decline. They arc also augmented by
that part of the new entry flow that finds its initial X above X- and activates
immediately. and by the activation flow at x'. Their numhers are diminished
by the now of Pois.<;on deaths.

In fact we only need the total number of active firms. not the distribution
of their X values. tn lind the industry equilibrium. The new entry now that
activates immediately is Nil - G(x·)I. The activation flow was found from
the solution for waiting firms above as -! 0

2t/J'(x·). The pnpulation of active
firms being Q. the death flow is AQ. To keep the numbers constant. we need

We can calculate x' and Q from earlier conditions of equilibrium: the activa­
tion condition (27) and the free entry condition (30). Therefore this equation
defines N. Since new entrants are indifferent to their choice because of the
free entry condition ()O). we can adopt the usual convcntion of long-run
equilibrium 'lIlalysis and suppose that just enough of them do enter. Thus the
"stochastically stationary" equilibrium depicted above can be sustained.

In our special case where X has the uniform distribution. the condition
(35) becomes



The actual value of a firm with a given X is V (X, If!) = X lIe W). A
prospective entrant. however. observes only W. Therefore the expected value
from the entrant's perspective is X lIe W). The threshold W is defined by the
condition of free entry. so this expected value must equal the cost of entry R
at that point. Substituting and simplifying. we find

This is a very natural generalization that combines the corresponding equa­
tions for the case of pure industry-wide uncertainty----equation (10) of Sec­
tion 2 above-and pure firm-specific uncertainty-cquation (27) of Section 4
above. Its properties should Ily now be too familiar to need comment.

For further theoretical details of this model we refer the reader to
Caballero and Pindyck (1992). In Chapter 12 we will discuss an empirical
application of it.

and moreover, it acts as a ceiling or renecting harricr. These effects can he
understood only by conducting a proper industry-level analysis. See Pindyck
(l993a) for a more specific and detailed discussion of this point. Caballero
and Pindyck (1992) later joined forces to produce the model of industry cqui­
Ubrium with combined firm-specific and aggregate uncertainty thai forms the
basis of our treatment above.

2HIDynamic Equilibrium in a Competitive Industry
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Industry Equilibrium

-W PI RX J =-- (r + A - a., - awl .
fJ. - I
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6 Guide to the Literature

Lucas and Prescot! (1971) considered the rational expectations equilibrium
of investment in a competitive industry using a discrete-time Markov chain
model. They established the optimality of the equilihrium. Lippman and
Rumelt ( 1985) combined entry and exit in a similar model.

Edlcson and Osband (11)88) showed that a competitive firm's entry and

U
:Xit thrc<;holds in equilibrium were not the Marshallian ones. The coincidenc.e
between a monopoly firm's option-value thresholds and a competitive firm's
free entry threshold was first nuted by Leahy (1992). Our exposition mostly
follows Dixit (I99Jh).

Dumas (1992) presented an early model of genc ral equilibrium where
each firm made costly switching decisions under Brownian motion uncer-
tainty; this was in the context of international relocation of productive capital,
and the aim was to characterize the equilibrium dynamics of real exchange
rates.

Cahallero (191)1) attempted to study industry equilihrium by the shortcut
of modelling just one firm's decision, parametrically varying the price elastic­
ity of its demand, and interpreting perfect competition as the limit when the
elasticity goes to infinity. He argued that the traditional present value criterion
would be restored in this limit. However, one must recognize that the level
of price about which to make the demand more elastic is itself enqenous,
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